Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Dis Model Mech ; 17(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38353122

ABSTRACT

Nervous system tumors, particularly brain tumors, represent the most common tumors in children and one of the most lethal tumors in adults. Despite decades of research, there are few effective therapies for these cancers. Although human nervous system tumor cells and genetically engineered mouse models have served as excellent platforms for drug discovery and preclinical testing, they have limitations with respect to accurately recapitulating important aspects of the pathobiology of spontaneously arising human tumors. For this reason, attention has turned to the deployment of human stem cell engineering involving human embryonic or induced pluripotent stem cells, in which genetic alterations associated with nervous system cancers can be introduced. These stem cells can be used to create self-assembling three-dimensional cerebral organoids that preserve key features of the developing human brain. Moreover, stem cell-engineered lines are amenable to xenotransplantation into mice as a platform to investigate the tumor cell of origin, discover cancer evolutionary trajectories and identify therapeutic vulnerabilities. In this article, we review the current state of human stem cell models of nervous system tumors, discuss their advantages and disadvantages, and provide consensus recommendations for future research.


Subject(s)
Brain Neoplasms , Induced Pluripotent Stem Cells , Child , Humans , Animals , Mice , Cell Differentiation , Induced Pluripotent Stem Cells/pathology , Brain Neoplasms/pathology , Brain/pathology , Mutation
2.
Ophthalmic Plast Reconstr Surg ; 40(1): e1-e4, 2024.
Article in English | MEDLINE | ID: mdl-37552498

ABSTRACT

A 52-year-old woman presented with a 6-month history of progressive right proptosis associated with intermittent right retrobulbar and facial pain. MRI revealed a heterogeneously enhancing, well-circumscribed, ovoid, soft tissue mass in the intraconal space near the right orbital apex displacing the optic nerve medially. Excisional biopsy established the diagnosis of a schwannoma-perineurioma hybrid peripheral nerve sheath tumor (HPNST). This case represents only the second reported occurrence, to our knowledge, of an orbital schwannoma-perineurioma HPNST.


Subject(s)
Exophthalmos , Nerve Sheath Neoplasms , Neurilemmoma , Orbital Neoplasms , Female , Humans , Middle Aged , Orbit/diagnostic imaging , Orbit/pathology , Nerve Sheath Neoplasms/diagnosis , Neurilemmoma/diagnosis , Neurilemmoma/pathology , Orbital Neoplasms/pathology
5.
Neuro Oncol ; 25(11): 1920-1931, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37738646

ABSTRACT

Pediatric low-grade gliomas (pLGGs) are the most common brain tumor in young children. While they are typically associated with good overall survival, children with these central nervous system tumors often experience chronic tumor- and therapy-related morbidities. Moreover, individuals with unresectable tumors frequently have multiple recurrences and persistent neurological symptoms. Deep molecular analyses of pLGGs reveal that they are caused by genetic alterations that converge on a single mitogenic pathway (MEK/ERK), but their growth is heavily influenced by nonneoplastic cells (neurons, T cells, microglia) in their local microenvironment. The interplay between neoplastic cell MEK/ERK pathway activation and stromal cell support necessitates the use of predictive preclinical models to identify the most promising drug candidates for clinical evaluation. As part of a series of white papers focused on pLGGs, we discuss the current status of preclinical pLGG modeling, with the goal of improving clinical translation for children with these common brain tumors.


Subject(s)
Brain Neoplasms , Glioma , Child , Humans , Child, Preschool , Glioma/pathology , Brain Neoplasms/pathology , Mutation , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase Kinases , Tumor Microenvironment
6.
Clin Cancer Res ; 29(24): 5031-5037, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37498309

ABSTRACT

PURPOSE: Treatment of wingless (WNT)-activated medulloblastoma (WNT+MB) with surgery, irradiation (XRT), and chemotherapy results in excellent outcomes. We studied the efficacy of therapy de-intensification by omitting XRT entirely in children with WNT+MB. PATIENTS AND METHODS: Tumors were molecularly screened to confirm the diagnosis of WNT+MB. Eligible children were treated within 31 days following surgery with nine cycles of adjuvant chemotherapy per ACNS0331. No XRT was planned. The primary endpoint was the occurrence of relapse, progression, or death in the absence of XRT within the first two years after study enrollment. Four events in the first 10 evaluable patients would result in early study closure. RESULTS: Fourteen children were prescreened, and nine met the protocol definition of WNT+MB. Six of the nine eligible patients consented to protocol therapy, and five completed planned protocol therapy. The first two children enrolled relapsed shortly after therapy completion with local and leptomeningeal recurrences. The study was closed early due to safety concerns. Both children are surviving after XRT and additional chemotherapy. A third child relapsed at completion of therapy but died of progressive disease 35 months from diagnosis. Two children finished treatment but immediately received post-treatment XRT to guard against early relapse. The final child's treatment was aborted in favor of a high-dose therapy/stem cell rescue approach. Although OS at 5 years is 83%, no child received only planned protocol therapy, with all receiving eventual XRT and/or alternative therapy. CONCLUSIONS: Radiotherapy is required to effectively treat children with WNT-altered medulloblastoma. See related commentary by Gottardo and Gajjar, p. 4996.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Child , Humans , Medulloblastoma/drug therapy , Medulloblastoma/radiotherapy , Combined Modality Therapy , Pilot Projects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/drug therapy , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/radiotherapy , Recurrence
7.
Neuro Oncol ; 25(8): 1474-1486, 2023 08 03.
Article in English | MEDLINE | ID: mdl-36840626

ABSTRACT

BACKGROUND: People with NF1 have an increased prevalence of central nervous system malignancy. However, little is known about the clinical course or pathologic features of NF1-associated gliomas in adults, limiting clinical care and research. METHODS: Adults (≥18 years) with NF1 and histologically confirmed non-optic pathway gliomas (non-OPGs) at Johns Hopkins Hospital, Memorial Sloan Kettering Cancer Center, and Washington University presenting between 1990 and 2020 were identified. Retrospective data were collated, and pathology was reviewed centrally. RESULTS: Forty-five patients, comprising 23 females (51%), met eligibility criteria, with a median of age 37 (18-68 years) and performance status of 80% (30%-100%). Tissue was available for 35 patients. Diagnoses included infiltrating (low-grade) astrocytoma (9), glioblastoma (7), high-grade astrocytoma with piloid features (4), pilocytic astrocytoma (4), high-grade astrocytoma (3), WHO diagnosis not reached (4) and one each of gliosarcoma, ganglioglioma, embryonal tumor, and diffuse midline glioma. Seventy-one percent of tumors were midline and underwent biopsy only. All 27 tumors evaluated were IDH1-wild-type, independent of histology. In the 10 cases with molecular testing, the most common genetic variants were NF1, EGFR, ATRX, CDKN2A/B, TP53, TERT, and MSH2/3 mutation. While the treatments provided varied, the median overall survival was 24 months [2-267 months] across all ages, and 38.5 [18-109] months in individuals with grade 1-2 gliomas. CONCLUSIONS: Non-OPGs in adults with NF1, including low-grade tumors, often have an aggressive clinical course, indicating a need to better understand the pathobiology of these NF1-associated gliomas.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Neurofibromatosis 1 , Female , Humans , Adult , Neurofibromatosis 1/complications , Neurofibromatosis 1/genetics , Retrospective Studies , Glioma/genetics , Glioma/pathology , Astrocytoma/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Disease Progression
8.
Acta Neuropathol ; 145(1): 71-82, 2023 01.
Article in English | MEDLINE | ID: mdl-36271929

ABSTRACT

High-grade astrocytoma with piloid features (HGAP) is a recently recognized glioma type whose classification is dependent on its global epigenetic signature. HGAP is characterized by alterations in the mitogen-activated protein kinase (MAPK) pathway, often co-occurring with CDKN2A/B homozygous deletion and/or ATRX mutation. Experience with HGAP is limited and to better understand this tumor type, we evaluated an expanded cohort of patients (n = 144) with these tumors, as defined by DNA methylation array testing, with a subset additionally evaluated by next-generation sequencing (NGS). Among evaluable cases, we confirmed the high prevalence CDKN2A/B homozygous deletion, and/or ATRX mutations/loss in this tumor type, along with a subset showing NF1 alterations. Five of 93 (5.4%) cases sequenced harbored TP53 mutations and RNA fusion analysis identified a single tumor containing an NTRK2 gene fusion, neither of which have been previously reported in HGAP. Clustering analysis revealed the presence of three distinct HGAP subtypes (or groups = g) based on whole-genome DNA methylation patterns, which we provisionally designated as gNF1 (n = 18), g1 (n = 72), and g2 (n = 54) (median ages 43.5 years, 47 years, and 32 years, respectively). Subtype gNF1 is notable for enrichment with patients with Neurofibromatosis Type 1 (33.3%, p = 0.0008), confinement to the posterior fossa, hypermethylation in the NF1 enhancer region, a trend towards decreased progression-free survival (p = 0.0579), RNA processing pathway dysregulation, and elevated non-neoplastic glia and neuron cell content (p < 0.0001 and p < 0.0001, respectively). Overall, our expanded cohort broadens the genetic, epigenetic, and clinical phenotype of HGAP and provides evidence for distinct epigenetic subtypes in this tumor type.


Subject(s)
Astrocytoma , Brain Neoplasms , Neurofibromatosis 1 , Humans , Neurofibromatosis 1/genetics , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Homozygote , Sequence Deletion , Astrocytoma/genetics , Astrocytoma/pathology , Mutation/genetics , DNA Methylation/genetics
9.
Neuro Oncol ; 25(5): 899-912, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36273330

ABSTRACT

BACKGROUND: Intensive chemotherapeutic regimens with craniospinal irradiation have greatly improved survival in medulloblastoma patients. However, survival markedly differs among molecular subgroups and their biomarkers are unknown. Through unbiased screening, we found Schlafen family member 11 (SLFN11), which is known to improve response to DNA damaging agents in various cancers, to be one of the top prognostic markers in medulloblastomas. Hence, we explored the expression and functions of SLFN11 in medulloblastoma. METHODS: SLFN11 expression for each subgroup was assessed by immunohistochemistry in 98 medulloblastoma patient samples and by analyzing transcriptomic databases. We genetically or epigenetically modulated SLFN11 expression in medulloblastoma cell lines and determined cytotoxic response to the DNA damaging agents cisplatin and topoisomerase I inhibitor SN-38 in vitro and in vivo. RESULTS: High SLFN11 expressing cases exhibited significantly longer survival than low expressing cases. SLFN11 was highly expressed in the WNT-activated subgroup and in a proportion of the SHH-activated subgroup. While WNT activation was not a direct cause of the high expression of SLFN11, a specific hypomethylation locus on the SLFN11 promoter was significantly correlated with high SLFN11 expression. Overexpression or deletion of SLFN11 made medulloblastoma cells sensitive and resistant to cisplatin and SN-38, respectively. Pharmacological upregulation of SLFN11 by the brain-penetrant histone deacetylase-inhibitor RG2833 markedly increased sensitivity to cisplatin and SN-38 in SLFN11-negative medulloblastoma cells. Intracranial xenograft studies also showed marked sensitivity to cisplatin by SLFN11-overexpression in medulloblastoma cells. CONCLUSIONS: High SLFN11 expression is one factor which renders favorable outcomes in WNT-activated and a subset of SHH-activated medulloblastoma possibly through enhancing response to cisplatin.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Cisplatin/pharmacology , Up-Regulation , Irinotecan , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Epigenesis, Genetic , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Nuclear Proteins/metabolism
10.
Biomedicines ; 10(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36359362

ABSTRACT

Neurocytomas are rare low-grade brain tumors predominantly affecting young adults, but their cellular origin and molecular pathogenesis is largely unknown. We previously reported a sellar neurocytoma that secreted excess arginine vasopressin causing syndrome of inappropriate anti-diuretic hormone (SIADH). Whole exome sequencing in 21 neurocytoma tumor tissues identified somatic mutations in the plant homeodomain finger protein 14 (PHF14) in 3/21 (14%) tumors. Of these mutations, two were missense mutations and 4 caused splicing site losses, resulting in PHF14 dysfunction. Employing shRNA-mediated knockdown and CRISPR/Cas9-based knockout approaches, we demonstrated that loss of PHF14 increased proliferation and colony formation in five different human, mouse and rat mesenchymal and differentiated cell lines. Additionally, we demonstrated that PHF14 depletion resulted in upregulation of platelet derived growth factor receptor-alpha (PDGFRα) mRNA and protein in neuroblastoma SHSY-5Y cells and led to increased sensitivity to treatment with the PDGFR inhibitor Sunitinib. Furthermore, in a neurocytoma primary culture harboring splicing loss PHF14 mutations, overexpression of wild-type PHF14 and sunitinib treatment inhibited cell proliferation. Nude mice, inoculated with PHF14 knockout SHSY-5Y cells developed earlier and larger tumors than control cell-inoculated mice and Sunitinib administration caused greater tumor suppression in mice harboring PHF-14 knockout than control SHSY-5Y cells. Altogether our studies identified mutations of PHF14 in 14% of neurocytomas, demonstrate it can serve as an alternative pathway for certain cancerous behavior, and suggest a potential role for Sunitinib treatment in some patients with residual/recurrent neurocytoma.

11.
Acta Neuropathol Commun ; 10(1): 120, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986378

ABSTRACT

A major obstacle to identifying improved treatments for pediatric low-grade brain tumors (gliomas) is the inability to reproducibly generate human xenografts. To surmount this barrier, we leveraged human induced pluripotent stem cell (hiPSC) engineering to generate low-grade gliomas (LGGs) harboring the two most common pediatric pilocytic astrocytoma-associated molecular alterations, NF1 loss and KIAA1549:BRAF fusion. Herein, we identified that hiPSC-derived neuroglial progenitor populations (neural progenitors, glial restricted progenitors and oligodendrocyte progenitors), but not terminally differentiated astrocytes, give rise to tumors retaining LGG histologic features for at least 6 months in vivo. Additionally, we demonstrated that hiPSC-LGG xenograft formation requires the absence of CD4 T cell-mediated induction of astrocytic Cxcl10 expression. Genetic Cxcl10 ablation is both necessary and sufficient for human LGG xenograft development, which additionally enables the successful long-term growth of patient-derived pediatric LGGs in vivo. Lastly, MEK inhibitor (PD0325901) treatment increased hiPSC-LGG cell apoptosis and reduced proliferation both in vitro and in vivo. Collectively, this study establishes a tractable experimental humanized platform to elucidate the pathogenesis of and potential therapeutic opportunities for childhood brain tumors.


Subject(s)
Astrocytoma , Brain Neoplasms , Glioma , Induced Pluripotent Stem Cells , Animals , Astrocytoma/genetics , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/therapy , Child , Glioma/genetics , Glioma/metabolism , Glioma/therapy , Humans , Induced Pluripotent Stem Cells/metabolism , Mice , Neuroglia/pathology
12.
Cancers (Basel) ; 14(12)2022 Jun 19.
Article in English | MEDLINE | ID: mdl-35740680

ABSTRACT

Subsets of Neurofibromatosis Type 1 (NF1)-associated solid tumors have been shown to display high frequencies of ATRX mutations and the presence of alternative lengthening of telomeres (ALT). We studied the phenotype of combined NF1 and ATRX deficiency in malignant solid tumors. Cell lines derived from NF1-deficient sporadic glioblastomas (U251, SF188), an NF1-associated ATRX mutant glioblastoma cell line (JHH-NF1-GBM1), an NF1-derived sarcoma cell line (JHH-CRC65), and two NF1-deficient MPNST cell lines (ST88-14, NF90.8) were utilized. Cancer cells were treated with ATR inhibitors, with or without a MEK inhibitor or temozolomide. In contrast to the glioma cell line SF188, combined ATRX knockout (KO) and TERC KO led to ALT-like properties and sensitized U251 glioma cells to ATR inhibition in vitro and in vivo. In addition, ATR inhibitors sensitized U251 cells to temozolomide, but not MEK inhibition, irrespective of ATRX level manipulation; whereas, the JHH-NF1-GBM1 cell line demonstrated sensitivity to ATR inhibition, but not temozolomide. Similar effects were noted using the MPNST cell line NF90.8 after combined ATRX knockdown and TERC KO; however, not in ST88-14. Taken together, our study supports the feasibility of targeting the ATR pathway in subsets of NF1-deficient and associated tumors.

15.
Hum Pathol ; 126: 63-76, 2022 08.
Article in English | MEDLINE | ID: mdl-35561840

ABSTRACT

Molecular classification of brain neoplasms is important for diagnosis, prognosis, and treatment outcome of histologically similar tumors. Oligodendroglioma is a glioma subtype characterized by 1p/19q co-deletion and IDH1/IDH2 mutations, which predict a good prognosis, responsiveness to therapy, and an improved overall survival compared to other adult gliomas. In a routine clinical setting, 1p/19q co-deletion is detected by interphase-FISH and SNP microarray, and somatic mutations are detected by targeted next-generation sequencing (NGS). The aim of this proof-of-principle study was to investigate the feasibility of using targeted NGS to simultaneously detect both 1p/19q co-deletion and somatic mutations. Among 247 consecutive patients with formalin-fixed paraffin-embedded brain tumors with various subtypes, NGS revealed 1p/19q co-deletion in 26 oligodendrogliomas and an IDH-wildtype astrocytoma, and partial loss across chromosomes 1p and 19q/whole-arm loss of 1p or 19q/copy neutral loss of heterozygosity in 11 nonoligodendrogliomas. For this 247 brain-tumor cohort, the overall sensitivity, specificity, and accuracy of detecting 1p/19q co-deletion by NGS in oligodendrogliomas were 96.2%, 99.6%, and 99.2%, respectively. The oligodendroglioma cohort had more mutations in IDH1/IDH2, CIC, FUBP1, and TERT, and fewer mutations in ATRX and TP53 than the nonoligodendroglioma cohort. This proof-of-concept study demonstrated that targeted NGS can simultaneously detect both 1p/19q co-deletion and somatic mutations, which can provide a more comprehensive genetic profiling for patients with gliomas using a single assay in a clinical setting.


Subject(s)
Brain Neoplasms , Glioma , Oligodendroglioma , Brain Neoplasms/pathology , Chromosome Aberrations , Chromosome Deletion , Chromosomes, Human, Pair 1/genetics , Chromosomes, Human, Pair 19/genetics , DNA-Binding Proteins/genetics , Formaldehyde , Glioma/genetics , Glioma/pathology , High-Throughput Nucleotide Sequencing , Humans , Isocitrate Dehydrogenase/genetics , Mutation , Oligodendroglioma/genetics , Oligodendroglioma/pathology , Paraffin Embedding , RNA-Binding Proteins/genetics
16.
Oncogene ; 41(21): 2973-2983, 2022 05.
Article in English | MEDLINE | ID: mdl-35459782

ABSTRACT

Activating RAS mutations are found in a subset of fusion-negative rhabdomyosarcoma (RMS), and therapeutic strategies to directly target RAS in these tumors have been investigated, without clinical success to date. A potential strategy to inhibit oncogenic RAS activity is the disruption of RAS prenylation, an obligate step for RAS membrane localization and effector pathway signaling, through inhibition of farnesyltransferase (FTase). Of the major RAS family members, HRAS is uniquely dependent on FTase for prenylation, whereas NRAS and KRAS can utilize geranylgeranyl transferase as a bypass prenylation mechanism. Tumors driven by oncogenic HRAS may therefore be uniquely sensitive to FTase inhibition. To investigate the mutation-specific effects of FTase inhibition in RMS we utilized tipifarnib, a potent and selective FTase inhibitor, in in vitro and in vivo models of RMS genomically characterized for RAS mutation status. Tipifarnib reduced HRAS processing, and plasma membrane localization leading to decreased GTP-bound HRAS and decreased signaling through RAS effector pathways. In HRAS-mutant cell lines, tipifarnib reduced two-dimensional and three-dimensional cell growth, and in vivo treatment with tipifarnib resulted in tumor growth inhibition exclusively in HRAS-mutant RMS xenografts. Our data suggest that small molecule inhibition of FTase is active in HRAS-driven RMS and may represent an effective therapeutic strategy for a genomically-defined subset of patients with RMS.


Subject(s)
Rhabdomyosarcoma, Embryonal , Rhabdomyosarcoma , Farnesyltranstransferase/genetics , Genes, ras , Humans , Prenylation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Rhabdomyosarcoma/drug therapy , Rhabdomyosarcoma/genetics
18.
Arch Pathol Lab Med ; 146(5): 547-574, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35175291

ABSTRACT

CONTEXT.­: The diagnosis and clinical management of patients with diffuse gliomas (DGs) have evolved rapidly over the past decade with the emergence of molecular biomarkers that are used to classify, stratify risk, and predict treatment response for optimal clinical care. OBJECTIVE.­: To develop evidence-based recommendations for informing molecular biomarker testing for pediatric and adult patients with DGs and provide guidance for appropriate laboratory test and biomarker selection for optimal diagnosis, risk stratification, and prediction. DESIGN.­: The College of American Pathologists convened an expert panel to perform a systematic review of the literature and develop recommendations. A systematic review of literature was conducted to address the overarching question, "What ancillary tests are needed to classify DGs and sufficiently inform the clinical management of patients?" Recommendations were derived from quality of evidence, open comment feedback, and expert panel consensus. RESULTS.­: Thirteen recommendations and 3 good practice statements were established to guide pathologists and treating physicians on the most appropriate methods and molecular biomarkers to include in laboratory testing to inform clinical management of patients with DGs. CONCLUSIONS.­: Evidence-based incorporation of laboratory results from molecular biomarker testing into integrated diagnoses of DGs provides reproducible and clinically meaningful information for patient management.


Subject(s)
Glioma , Pathologists , Adult , Child , Humans , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Glioma/diagnosis , Glioma/genetics , Molecular Diagnostic Techniques , Receptor, ErbB-2/genetics , Systematic Reviews as Topic
19.
J Neurosurg ; : 1-12, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35148513

ABSTRACT

OBJECTIVE: Subependymomas are low-grade ependymal tumors whose clinical characteristics, radiographic features, and postsurgical outcomes are incompletely characterized due to their rarity. The authors present an institutional case series and a systematic literature review to achieve a better understanding of subependymomas. METHODS: Adult patients with histologically confirmed subependymoma or mixed subependymoma-ependymoma surgically treated at a tertiary hospital between 1992 and 2020 were identified. A systematic literature review of the PubMed, Embase, Web of Science, and Google Scholar databases from inception until December 4, 2020, was conducted according to PRISMA guidelines. Data extracted from both groups included demographics, radiographic features, tumor characteristics, management, and follow-up variables. RESULTS: Forty-eight unique patients with subependymoma were identified by chart review; of these patients, 8 (16.7%) had mixed subependymoma-ependymoma tumors. The median age at diagnosis was 49 years (IQR 19.8 years), and 26 patients (54.2%) were male. Forty-two patients (87.5%) had intracranial subependymomas, and 6 (12.5%) had spinal tumors. The most common presentation was headache (n = 20, 41.7%), although a significant number of tumors were diagnosed incidentally (n = 16, 33.3%). Among the 42 patients with intracranial tumors, 15 (35.7%) had hydrocephalus, and the most common surgical strategy was a suboccipital approach with or without C1 laminectomy (n = 26, 61.9%). Gross-total resection (GTR) was achieved in 33 cases (68.7%), and 2 patients underwent adjuvant radiotherapy. Most patients had no major postsurgical complications (n = 34, 70.8%), and only 1 (2.1%) had recurrence after GTR. Of 2036 reports initially identified in the systematic review, 39 were eligible for inclusion, comprising 477 patients. Of 462 patients for whom tumor location was reported, 406 (87.9%) were intracranial, with the lateral ventricle as the most common location (n = 214, 46.3%). Spinal subependymomas occurred in 53 patients (11.5%), with 3 cases (0.6%) in multiple locations. Similar to the case series at the authors' institution, headache was the most common presenting symptom (n = 231, 54.0%) among the 428 patients whose presentation was reported. Twenty-seven patients (6.3%) were diagnosed incidentally, and 36 cases (8.4%) were found at autopsy. Extent of resection was reported for 350 patients, and GTR was achieved in 250 (71.4%). Fifteen of 337 patients (4.5%) had recurrence or progression. CONCLUSIONS: The authors' case series and literature review demonstrate that patients with subependymoma are well managed with resection and generally have a favorable prognosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...